Correction of misalignment errors in stereoscopic PIV systems

R. Giordano, T. Astarita, G.M. Carlomagno

University of Naples “Federico II” – DETEC

6-7 November 2006
Faculty of Engineering - University "Roma Tre"
OUTLINE

• Introduction on Stereo PIV technique

• Correction of formulae to compute viewing angles

• Correction of misalignment errors

• Experimental results

• Conclusions
STEREOPIV PROCEDURE WITH GEOMETRIC RECONSTRUCTION

- Achievement of Scheimpflug condition
- Calibration
- Storage of images
- Mapping function
- Dewarping of images
- Iterative Deformation PIV Process
- Data analysis
- Geometric reconstruction of three-dimensional flow field
CALIBRATION

An interpolating function from object to image coordinates is used:

\[\bar{X} = \bar{F}(\bar{x}) \]

With:

\[
\bar{X} = \begin{pmatrix} X^1 \\ Y^1 \\ X^2 \\ Y^2 \end{pmatrix}, \quad \bar{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}
\]

Coefficients of mapping function are calculated with the least squares method.
CALIBRATION WITH CAMERA PINHOLE MODEL

The model consists of 6 *extrinsic* parameters which describe the camera pinhole orientation and position in the object space, and of 6 *intrinsic* parameters, which are specific to the camera itself:

- s_x pixel aspect ratio
- k_1 and k_2 radial distortion factors (first and second order)
- f focal length
- (u_0, v_0) intersection of the optical axis with the image plane
CALIBRATION: DIFFERENT INTERPOLATING FUNCTIONS USED

In this work, following interpolating models have been analysed:

\[\hat{F}(x) = a_0 + a_1 x + a_2 y + a_3 z + a_4 x^2 + a_5 xy + a_6 y^2 + a_7 xz + a_8 yz + a_9 z^2 + a_{10} x^3 + \]
\[a_{11} x^2 y + a_{12} xy^2 + a_{13} y^3 + a_{14} x^2 z + a_{15} xyz + a_{16} y^2 z + a_{17} xz^2 + a_{18} yz^2 \]

\[\hat{F}(x) = a_0 + a_1 x + a_2 y + a_3 z + a_4 x^2 + a_5 xy + a_6 y^2 + a_7 xz + a_8 yz + a_9 z^2 + a_{10} x^3 + \]
\[a_{11} x^2 y + a_{12} xy^2 + a_{13} y^3 + a_{14} x^2 z + a_{15} xyz + a_{16} y^2 z + a_{17} xz^2 + a_{18} yz^2 + a_{19} z^3 \]

\[\hat{F}(x) = \frac{a_0 + a_1 x + a_2 y + a_3 z + a_4 x^2 + a_5 xy + a_6 y^2 + a_7 xz + a_8 yz + a_9 z^2}{1 + a_{10} \dot{x} + a_{11} \dot{y} + a_{12} \dot{z} + a_{13} x^2 + a_{14} xy + a_{15} y^2 + a_{16} xz + a_{17} yz + a_{18} z^2} \]

\[\hat{F}(x) = \frac{a_0 + a_1 x + a_2 y + a_3 z}{1 + a_4 x + a_5 y + a_6 z} \]
RECONSTRUCTION OF FLOW FIELD

Stereo PIV Technique
RECONSTRUCTION OF FLOW FIELD
RECONSTRUCTION OF FLOW FIELD

\[\begin{align*}
\Delta x &= \frac{\Delta x_1 \tan \alpha_2 - \Delta x_2 \tan \alpha_1}{\tan \alpha_2 - \tan \alpha_1} \\
\Delta z &= \frac{\Delta x_1 - \Delta x_2}{\tan \alpha_2 - \tan \alpha_1} = \frac{\Delta y_1 - \Delta y_2}{\tan \beta_2 - \tan \beta_1} \\
\Delta y &= \frac{\Delta y_1 \tan \beta_2 - \Delta y_2 \tan \beta_1}{\tan \beta_2 - \tan \beta_1} = \\
&= \frac{\Delta y_1 + \Delta y_2}{2} + \frac{\Delta z}{2} (\tan \beta_1 + \tan \beta_2)
\end{align*} \]

With:

\[\begin{align*}
\tan(\alpha_{1,2}) &= \frac{\Delta x}{\Delta z} = \frac{X_{1,2}^z}{X_{1,2}^x} \\
\tan(\beta_{1,2}) &= \frac{\Delta y}{\Delta z} = \frac{Y_{1,2}^z}{Y_{1,2}^y}
\end{align*} \]
MISALIGNMENT ERRORS

Camera #1

Camera #2

Calibration plane

Measurement plane

P

P_1

P_2

Disparity Vector

Correction of misalignment errors

DETTEC – University of Naples “Federico II”
Achievement of Scheimpflug condition → Calibration → Storage of images

Mapping function → Dewarping of images → Disparity map → Computation of measurement plane

Iterative Deformation PIV Process with inner dewarping of images → Geometric reconstruction of three-dimensional flow field → Data analysis

STEREOPIV PROCEDURE PROPOSED TO CORRECT MISALIGNMENT ERRORS
EXPERIMENTAL RESULTS

The same pattern has been used to perform the calibration and to simulate the flow field.
Experimental results

Results of calibration with 3 planes using CPM, P332, R222, R11

<table>
<thead>
<tr>
<th>Interpolating method</th>
<th>RMS Cam 0 - Cam 1</th>
<th>MAX ERROR Cam 0 - Cam 1</th>
<th>R-SQUARE Cam 0 - Cam 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPM</td>
<td>0.3992</td>
<td>1.374</td>
<td></td>
</tr>
<tr>
<td>P332</td>
<td>0.2924</td>
<td>1.038</td>
<td>0.9992</td>
</tr>
<tr>
<td>R222</td>
<td>0.2942</td>
<td>1.014</td>
<td>0.9993</td>
</tr>
<tr>
<td>R111</td>
<td>0.3865</td>
<td>1.430</td>
<td>0.9952</td>
</tr>
</tbody>
</table>

Results of calibration with 5 planes using CPM, P332, P333, R222, R11

<table>
<thead>
<tr>
<th>Interpolating method</th>
<th>RMS Cam 0 - Cam 1</th>
<th>MAX ERROR Cam 0 - Cam 1</th>
<th>R-SQUARE Cam 0 - Cam 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPM</td>
<td>0.3954</td>
<td>1.377</td>
<td>0.9981</td>
</tr>
<tr>
<td>P332</td>
<td>0.29291</td>
<td>1.0477</td>
<td>0.99818</td>
</tr>
<tr>
<td>P333</td>
<td>0.29233</td>
<td>1.0453</td>
<td>0.99834</td>
</tr>
<tr>
<td>R222</td>
<td>0.29464</td>
<td>1.0866</td>
<td>0.99792</td>
</tr>
<tr>
<td>R111</td>
<td>0.38584</td>
<td>1.4197</td>
<td>0.99701</td>
</tr>
</tbody>
</table>
Uniform flow field along z ($w = 1 \text{ mm}$) without misalignment: correction of the formulae to compute viewing angles

Experimental results

First order formulae

Second order formulae

DETEC – University of Naples “Federico II”
Uniform flow field along z ($w = 1\text{mm}$) without misalignment: correction of the formulae to compute viewing angles

Experimental results

v component of flow field

First order formulae

Second order formulae
Experimental results

Uniform flow field along $z (w = 1 \text{mm})$ without misalignment:
correction of the formulae to compute viewing angles

w component of flow field

First order formulae

Second order formulae
Uniform flow field along x \((u'=1\,mm) \) with angular misalignment \(\alpha=-1^\circ \): correction of flow field using the disparity map

\[
z = 9.20e-002 - 1.69e-002 x + 9.51e-006 \cdot y
\]

Equation of measurement plane obtained by means of disparity map

<table>
<thead>
<tr>
<th>Prediction:</th>
<th>(u = 0.986,mm)</th>
<th>(v = 0,mm)</th>
<th>(w = -0.0169,mm)</th>
</tr>
</thead>
</table>

Results with disparity map

<table>
<thead>
<tr>
<th>Statistics</th>
<th>(u) (mm)</th>
<th>(v) (mm)</th>
<th>(w) (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Means</td>
<td>0.9984</td>
<td>-0.0005</td>
<td>-0.0162</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>0.0013</td>
<td>0.0009</td>
<td>0.0015</td>
</tr>
</tbody>
</table>

Results without disparity map

<table>
<thead>
<tr>
<th>Statistics</th>
<th>(u) (mm)</th>
<th>(v) (mm)</th>
<th>(w) (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Means</td>
<td>0.9988</td>
<td>-0.0005</td>
<td>-0.0330</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>0.0019</td>
<td>0.0010</td>
<td>0.0015</td>
</tr>
</tbody>
</table>
Uniform flow field along x ($u'=1\,mm$) with angular misalignment $\alpha=-1^\circ$: correction of flow field using the \textit{disparity map}

\begin{itemize}
 \item \textbf{Without corrections}
 \begin{itemize}
 \item u component of flow field
 \item Predictor: $u= 0.986\,mm$
 \end{itemize}
 \item \textbf{Corrected by means of disparity map}
\end{itemize}
Experimental results

Uniform flow field along x ($u'=1\,mm$) with angular misalignment $\alpha=-1^\circ$:

correction of flow field using the *disparity map*

v component of flow field

Predictor: $v=0\,mm$

Without corrections

Corrected by means of disparity map
Uniform flow field along x ($u' = 1\, mm$) with angular misalignment $\alpha = -1^\circ$:

correction of flow field using the disparity map

- **Without corrections**
- **Corrected by means of disparity map**

w component of flow field

Predictor: $w = -0.0169\, mm$
CONCLUSIONS

A correction to calculate viewing angles has been performed.

Misalignment errors between calibration plane and measurement plane have been analysed and a correction by means of disparity map has been proposed.

The proposed corrections, applied to simulated flow fields, allowed to achieve an improvement in results.